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An equilibrium similarity analysis is applied to the transport equation for 〈(δq)2〉
(≡ 〈(δu)2〉 + 〈(δv)2〉 + 〈(δw)2〉), the turbulent energy structure function, for decaying
homogeneous isotropic turbulence. A possible solution requires that the mean energy
〈q2〉 decays with a power-law behaviour (〈q2〉 ∼ xm), and the characteristic length
scale, which is readily identifiable with the Taylor microscale, varies as x1/2. This
solution is identical to that obtained by George (1992) from the spectral energy
equation. The solution does not depend on the actual magnitude of the Taylor-

microscale Reynolds number Rλ (∼ 〈q2〉1/2
λ/ν); Rλ should decay as x(m+1)/2 when

m < −1. The solution is tested at relatively low Rλ against grid turbulence data for
which m � −1.25 and Rλ decays as x−0.125. Although homogeneity and isotropy are
poorly approximated in this flow, the measurements of 〈(δq)2〉 and, to a lesser extent,
〈(δu)(δq)2〉, satisfy similarity reasonably over a significant range of r/λ, where r is
the streamwise separation across which velocity increments are estimated. For this
range, a similarity-based calculation of the third-order structure function 〈(δu)(δq)2〉
is in reasonable agreement with measurements. Kolmogorov-normalized distributions
of 〈(δq)2〉 and 〈(δu)(δq)2〉 collapse only at small r . Assuming homogeneity, isotropy
and a Batchelor-type parameterization for 〈(δq)2〉, it is found that Rλ may need to be
as large as 106 before a two-decade inertial range is observed.

1. Introduction
The problem of determining how energy decays in homogeneous isotropic

turbulence has been around for some time now. Taylor (1935) was first to describe the
concept of isotropy and apply it to the streamwise decay of energy in grid turbulence.
His work was extended by von Kármán & Howarth (1938) who started from the
equations of motion to derive a relation, in the form of a partial differential equation,
between the double (≡ Bu,u = 〈u(x + r)u(x)〉) and triple (≡ Buu,u = 〈u2(x + r)u(x)〉)
velocity correlation functions:
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246 R. A. Antonia, R. J. Smalley, T. Zhou, F. Anselmet and L. Danaila

These authors also investigated the solution of this equation when Buu,u(r) is neglected
and Bu,u(r) is self-preserving, i.e. its shape remains similar during decay, the only
change occurring through its scale. The idea of self-preservation was subsequently
adopted by a number of authors (e.g. Dryden 1943; Batchelor 1948; Batchelor &
Townsend 1947, 1948; Lin 1948; von Kármán & Lin 1949; Goldstein 1951; Stewart
& Townsend 1951; see also Monin & Yaglom 1975 and Hinze 1975) for investigating
the initial and final periods of decay, in the context of either velocity correlation
functions or energy spectra. The most detailed listing of different types of self-
preserving energy decay scenarios was provided by Batchelor (1948) for correlation
functions and Panchev (1971) for energy spectra. In the final period of decay, when
the Reynolds number is quite small, Batchelor found, by linearizing the equation, that
〈q2〉 ∼ (t − t0)

−5/2 where t0 is the temporal origin for the power-law decay; 〈q2〉, twice
the turbulent kinetic energy, is defined by

〈q2〉 = 2

∫ ∞

0

E(k) dk. (1.2)

In (1.2), E(k) is the three-dimensional energy spectrum and k is the magnitude of the
wavenumber vector k. George (1992) showed that 〈q2〉 decayed as t−5/2 as k → 0
provided the Loitsianskii invariant was satisfied or, equivalently, that E(k) ∼ k4. In
the initial period and for infinite Reynolds numbers, Kolmogorov (1941a) found that
〈q2〉 ∼ (t − t0)

−10/7. A more complete solution (〈q2〉 ∼ (t − t0)
−1), in which viscosity

is retained in the von Kármán–Howarth equation, was found by Dryden (1943), the
Taylor microscale λ (defined in § 2) being the relevant length scale; like von Kármán
and Howarth, Dryden required Rλ to be constant, which in turn requires a ‘−1’
decay since λ ∼ (t − t0)

1/2. As noted by Speziale & Bernard (1992), this solution
was also implicit in Batchelor’s (1948) analysis but dismissed because Loitsianskii’s
integral was not invariant (Proudman & Reid 1954). Saffman (1967) showed that
the integral

∫ ∞
0

r2Bu,u(r) dr was invariant, and used this as well as an additional

assumption about the form of E(k) to predict 〈q2〉 ∼ (t − t0)
−6/5 and 〈q2〉 ∼ (t − t0)

−3/2

for the initial and final periods of decay respectively. The t−3/2 result was obtained
in George (1992) without a model for E(k). Tatsumi (1980) and Mohamed & LaRue
(1990), who reviewed a significant amount of available data for decaying turbulence
downstream of a grid, found that, for the initial period, the majority of these exhibited
a 〈u2〉 ∼ (x−x0)

m behaviour, with m � −1.3 rather than m = −1. This latter exponent
was initially thought to be correct (an interesting discussion of this is given in George
et al. 2001) but, later, consensus favoured m < −1 due mainly to the measurements
of Corrsin (1963) (see George et al.) and Comte-Bellot & Corrsin (1966, 1971). Direct
numerical simulations (DNS) have yielded a much larger range of values for m,
typically between −1 and −2.5 (George et al. 2001), apparently reflecting, at least in
part, the greater variation in initial conditions than that which occurs in experiments.
While decaying box turbulence simulations can potentially approximate homogeneous
isotropic turbulence more closely than grid turbulence, the finite size of the DNS box
can seriously affect the lowest wavenumbers of the energy spectrum. This can in turn
affect 〈q2〉 (and therefore the exponent m) and, to a greater extent, the integral length
scale L (George et al. 2001; Wang & George 2002). In grid experiments, one cannot
discount the effect the size of a tunnel working section may have on the rate of
growth of L. A more general discussion of the effect of finite boundaries is given in
George (1999).

George (1987, 1992) – the latter paper will hereafter be referred to as G92 –
re-examined the self-preserving decay of homogeneous isotropic turbulence by
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considering the spectral energy equation

∂E(k)

∂t
= T (k) − 2νk2E(k), (1.3)

where T (k) is the nonlinear spectral transfer function. He obtained the solution
〈q2〉 ∼ (t − t0)

m, independently of the magnitude of the Reynolds number, for m � −1.
Speziale & Bernard (1992) carried out a fixed point analysis on an equation which
combines the von Kármán–Howarth equation with the transport equation for 〈ε〉,
the mean energy dissipation rate. They found that 〈q2〉 ∼ (t − t0)

−1 is the asymptotic
high-Reynolds-number solution whilst 〈q2〉 ∼ (t − t0)

m is achieved as t → ∞ and
the Reynolds number approaches 0. It should be made clear however that these
authors (also Zhou & Speziale 1998, who considered the equation for the two-point
double velocity correlation) assumed in essence that the velocity derivative skewness S

(≡ −〈(∂u/∂t)3〉/〈(∂u/∂t)2〉3/2
) remains constant with t and deduced that Rλ is constant

and 〈q2〉 ∼ (t − t0)
−1. This follows immediately from G92, which says that only the

product SRλ is constant with no further assumptions about either S or Rλ.
In the specific context of grid turbulence for which m is typically smaller than –1

and the Reynolds number is generally small (this is usually the case for passive grids),
the G92 solution is attractive. When m = −1, G92 is consistent with asymptotic
solutions (Kolmogorov 1941a; von Kármán & Howarth 1938; Speziale & Bernard
1992). In support of the m < −1 similarity solution, George examined both the
one-dimensional spectra of u measured by Comte-Bellot & Corrsin (1971) and three-
dimensional energy spectra which were calculated from the measured u spectra via
isotropy. This calculation should be approximately valid in the context of the Comte-
Bellot & Corrsin experiment where a secondary contraction was placed downstream
of the grid and isotropy was satisfied approximately at both large and small scales.
Although reasonable collapse of the spectra was found using 〈q2〉1/2

and λ, it was not a
significant improvement over that based on the Kolmogorov length η ≡ ν3/4〈ε〉−1/4 and
velocity UK ≡ ν1/4〈ε〉1/4 scales (published spectra, obtained over a wide range of flows,
support this scaling at sufficiently large wavenumbers, e.g. Saddoughi & Veeravalli
1994) or that which uses the integral length scale L (defined from E(k), (4.1) in § 4)

and 〈q2〉1/2
. Equally good collapse of the spectra with any of the three previously

mentioned sets of scales would be expected if Rλ (∼ 〈q2〉1/2
λ/ν; a more complete

definition is given in § 2) remains constant during decay since λ/η ∼ R
1/2
λ (Tennekes

& Lumley 1972). Similarly, if a pseudo-integral length scale Lε ≡ Cε〈q2/3〉3/2
/〈ε〉

is used (e.g. Batchelor 1953; Tennekes & Lumley 1972; the constant Cε depends
on the Reynolds number and, more generally, on initial conditions; the relevance
of Lε to the present experiment will be discussed in § 4), then Lε/λ ∼ Rλ and L is
proportional to λ only if Rλ remains constant. Constancy of Rλ would require that
m = −1 since 〈q2〉1/2 ∼ (x − x0)

m/2 and λ ∼ (x − x0)
1/2. It should also be noted that

〈q2〉1/2 ∼ UKR
1/2
λ , so that 〈q2〉1/2

is proportional to UK if Rλ is constant; similarity of
the von Kármán–Howarth equation using UK and η was shown to be possible by Lin
(1948) when U 2

K ∼ (t − t0) and η ∼ (t − t0)
1/2.

The G92 analysis differs from the earlier work (Dryden 1943; Batchelor 1948)
only through the treatment of Buu,u in (1.1) or, equivalently, T (k) in (1.2). G92
argued that it was more rigorous not to specify the same scale for Buu,u as for

Bu,u (or E(k)); the analysis yielded R−1
λ 〈q2〉3/2

(instead of 〈q2〉3/2
) as the ‘scale’ for

Buu,u (or T (k)). Batchelor & Townsend (1948) calculated Buu,u, using (1.1) and a self-
preserving form of Bu,u. This calculation was however in quite poor agreement with
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the measured distribution. Corrsin (1963) presented a calculation of Buu,u, apparently
based on 〈q2〉–λ similarity and the distribution of Bu,u, as measured by Stewart
(1951). The agreement between calculation and measurements was better than that
reported by Batchelor & Townsend (1948). Nevertheless, the calculation deviated
significantly from measurements, both at small and, more particularly, large r/λ. At
small r/λ, the calculated distribution increased more rapidly than the measured one,
the former peaking at r/λ � 1.5 and the latter at r/λ � 2.5. Corrsin attributed the
lack of agreement for r/λ � 2 to a departure from isotropy of the large scales. It
should also be mentioned that Stewart’s measurements of Bu,u did not satisfy 〈q2〉–λ
similarity, while the measured (normalized) distributions of Buu,u, at different x,
exhibited significant variability. Stewart (see also Stewart & Townsend 1951) noted
the severe difficulties encountered in the measurement of triple correlations. Monin
& Yaglom (1975) examined the Stewart & Townsend (1951) data in the context of
self-preservation of the structure functions, as originally carried out by Lin (1948). An
obvious advantage of this approach is that the second-order structure function must
go to zero at small r and to a constant at large r (the normalizing velocity scale can
be chosen to ensure that this constant is independent of x). They found that the data
for 〈(δu)2〉 could be made to satisfy self-preservation closely after suitable normalizing
velocity scales were chosen; the distributions of 〈(δu)3〉 also collapsed reasonably well
for r/λ � 4. As in Monin & Yaglom, we focus on structure functions, although
their empirical approach is avoided here. Instead, we follow a route analogous to
G92 and consider the equation which corresponds to (1.3) in physical space. From
an experimental viewpoint, this has the advantage of allowing possible similarity
solutions to be tested more readily than in the spectral domain since measurements
of T (k) and E(k) are now avoided. Similarity solutions to (1.3) can be tested using
DNS data (e.g. George et al. 2001). It can also be argued that structure functions are
more sensitive than spectra for testing different types of similarity solutions. Whereas
integral constraints apply to spectra, e.g. (1.2), the constraint on structure functions
is local.

The equation for velocity structure functions, which corresponds fully to (1.1) and
(1.3), is (Danaila et al. 1999)

−〈(δu)3〉 + 6ν
d

dr
〈(δu)2〉 − 3

U

r4

∫ r

0

s4 ∂

∂x
〈(δu)2〉 ds = 4

5
〈ε〉r, (1.4)

where δu ≡ u(x + r)−u(x) is the difference in streamwise velocity fluctuation between
two points in space separated by r along the streamwise direction, U is the mean
streamwise velocity, 〈ε〉 is the mean kinetic energy dissipation rate and s is a dummy
separation variable. It was shown that grid turbulence data satisfied (1.4) reasonably
well, after a self-preserving approximation and the assumption of global isotropy
was made to estimate ∂〈(δu)2〉/∂x. An equation for 〈(δq)2〉 was derived in Danaila,
Anselmet & Antonia (2002):

−〈(δu)(δq)2〉 + 2ν
d

dr
〈(δq)2〉 − U

r2

∫ r

0

s2 ∂

∂x
〈(δq)2〉 ds = 4

3
〈ε〉r. (1.5)

Note that we have preferred to write (1.4) and (1.5) in terms of x rather than time
mainly to facilitate the comparison between analytical results and grid turbulence
measurements. While (1.4) represents the equivalent expression in physical space to
(1.3), (1.5) requires a less restrictive isotropy hypothesis than (1.4). In addition, as was
emphasized in Danaila et al. (2002), this latter equation reduces for very large scales
to the homogeneous definition of 〈ε〉, i.e. 〈ε〉hom ≡ 3ν〈(∂q/∂x)2〉.
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In § 2, we consider the conditions for which (1.5) satisfies equilibrium similarity (the
terminology of G92 is retained here). We then test this solution using measurements
downstream of a grid. The availability of 〈q2〉 and 〈ε〉 in this experiment allow more
general definitions of λ and Rλ than would be possible with only 〈u2〉 and 〈ε〉iso,
the isotropic value of 〈ε〉. The basic characteristics of the flow are discussed in § 4.
Section 5 tests the similarity forms of both 〈(δq)2〉 and 〈(δu)(δq)2〉. Comparison is
also made between the measured distribution of 〈(δu)(δq)2〉 and that calculated using
(1.5), via measurements of 〈(δq)2〉 and 〈ε〉. In § 6, the effect of Reynolds number on
the calculation of 〈(δu)(δq)2〉 is tested by assuming a parameterization for 〈(δq)2〉 for
homogeneous isotropic turbulence.

It should be made clear from the outset that the present equilibrium similarity
solution (§ 2), like that of G92, does not require the Reynolds number to be large.
Although it would be desirable to test the theory against data in which there is a
large separation of scales between L and η, the theory is valid for any value of the
Reynolds number and does not constrain Rλ to be constant (with respect to time or
distance) for a specified set of initial conditions. We also emphasize that whilst G92
focused on the spectral domain, our approach deals with physical space and is more
readily amenable to testing against laboratory measurements.

2. Similarity solution of the energy structure function equation
We first examine the conditions under which (1.5) can satisfy similarity. Following

G92,

〈(δq)2〉 = Vf

(
r

L

)
(2.1)

and

−〈(δu)(δq)2〉 = Hg

(
r

L

)
, (2.2)

where L is a characteristic length scale, V (with dimensions of velocity squared)
and H (with dimensions of velocity cubed) are scales that characterize 〈(δq)2〉 and
〈(δu)(δq)2〉; L, V and H depend only on x. The dimensionless functions f and g

depend not only on r/L but also on initial conditions (for simplicity of expression,
this latter dependence is not indicated). After substituting (2.1) and (2.2) into (1.5),
we obtain

Hg + 2
νV

L f ′ +
UL2

r2
V

dL
dx

Γ1 − UL3

r2

dV

dx
Γ2 = −2

3
ULd〈q2〉

dx

r

L , (2.3)

where a prime denotes differentiation with respect to r/L and Γ1 and Γ2 are given
by

Γ1 ≡
∫ r/L

0

(
s

L

)3

f ′ d

(
s

L

)
, (2.4)

Γ2 ≡
∫ r/L

0

(
s

L

)2

f d

(
s

L

)
. (2.5)

In (2.3), 〈ε〉 was replaced by its corresponding value for decaying isotropic turbulence:

〈ε〉 = −U

2

d〈q2〉
dx

(2.6)
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and the dependence of both f and g on r̃ ≡ r/L is implicitly assumed. After
multiplication by (L/νV ), (2.3) becomes

[
HL
νV

]
g + [2]f ′ +

[
UL
ν

dL
dx

]
r̃−2Γ1 −

[
UL2

νV

dV

dx

]
r̃−2Γ2 = −2

3

[
UL2

νV

d〈q2〉
dx

]
r̃ .

(2.7)

For equilibrium similarity (e.g. G92) all the terms within square brackets must evolve
in the streamwise direction in exactly the same way. Since the second term of these is
constant, all the other tems must also be constant:

HL
νV

= constant, (2.8)

UL
ν

dL
dx

= a, (2.9)

UL2

νV

dV

dx
= b, (2.10)

and

UL2

νV

d〈q2〉
dx

= constant. (2.11)

Since U is constant, integration of (2.9) immediately yields

L2 − L2
0 =

2aν(x − x0)

U
(2.12)

with L0 = 0 at x = x0. By comparing (2.10) and (2.11), then

V ∼ 〈q2〉. (2.13)

Conditions (2.10) and (2.12) yield, after integration with respect to x,

V

Vi

=

(
x − x0

xi − x0

)b/2a

, (2.14)

where V = Vi at any point x = xi , except xi = x0. Relations (2.13) and (2.14) indicate
that a possible similarity solution of (1.5) is

〈q2〉 = A(x − x0)
m, (2.15)

with m = b/2a. The Taylor microscale λ is defined here as

λ2 = 5ν
〈q2〉
〈ε〉 . (2.16)

Using (2.6) and (2.15), λ2 reduces to

λ2 = −10ν

m

(x − x0)

U
. (2.17)

Comparison of (2.12) and (2.17) suggests that the characteristic length scale L can
be identified with λ. With V ≡ 〈q2〉 and L ≡ λ, (2.8) implies that

H ∼ ν
〈q2〉
λ

or H ∼ R−1
λ 〈q2〉3/2

.
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Figure 1. Schematic arrangement of the three-component hot-wire vorticity probe. The
separation between wires in each of the four X-probes is about 0.6 mm. All wires have a
diameter of 2.5 µm and a length of about 0.5 mm. The separations Sy and Sz are approximately
2.1 mm and 2.2 mm respectively. The angle β is nominally 45◦. Points a, b, c, d designate the
geometric centres of the four X-probes.

Rλ is defined here by

Rλ =
〈q2〉1/2

31/2

λ

ν
. (2.18)

With V ≡ 〈q2〉, H ≡ 3−1/2R−1
λ 〈q2〉3/2

(the factor 3−1/2 is included to simplify the
final expression for g) and L ≡ λ, (2.7) can, after some manipulation, be rewritten as

g = 20
3
r̃ + 5

r̃−2

m
Γ1 − 10r̃−2Γ2 − 2f ′. (2.19)

This indicates that g can be uniquely determined once f , the normalized second-order
structure function, and m, the power-law exponent describing the rate of decay of
〈q2〉, are known. The dependence of g on initial conditions occurs implicitly through
f and m, both of which depend on the initial conditions.

3. Experimental details
The present measurements were made with a three-component vorticity probe,

consisting of an arrangement comprising four X-wires (a sketch of this probe is
shown in figure 1; this probe was first used by Antonia, Zhou & Zhu 1998). Two
of these are in the (x, y)-plane, parallel to each other, and separated by a distance
Sz (in the z-direction) of about 2.2 mm. The other two are in the (x, z)-plane, also
parallel to each other, and separated by a distance Sy (in the y-direction) of about
2.1 mm. The wires were etched from Wollaston (Pt–10% Rh) material to a diameter
of 2.5 µm and a nominal length of 0.5 mm. Each wire was inclined at an effective
angle of about 45◦ to the mean flow direction.

For the biplane grid, consisting of 4.76 mm diameter rods, the mesh size M or
centre-to-centre spacing of the rods was 24.76 mm and the solidity of the grid was
about 0.35. The grid was located immediately downstream of the contraction (area
ratio of 9:1) of an open-circuit low-speed wind tunnel and at the entrance of a working
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section (350 mm × 350 mm × 2.4 m in length). The probe was traversed along the
centreline of the working section between x/M = 20 and x/M = 80 (here, x is the
longitudinal distance downstream of the grid). The longitudinal mean velocity U was
constant (� 12.08 m s−1) throughout the working section. The Reynolds number RM

was equal to 19 935. The Kolmogorov length scale η, estimated using (2.6), increased
from about 0.17 mm at x/M = 20 to 0.37 mm at x/M = 80. The ratio, with respect to
η, of the largest separation (2.2 mm) between a pair of X-wires varied between about
13 (x/M = 20) and 6 (x/M = 80). Consequently, the resolution for the measurements
of the vorticity fluctuations was poor, especially at the smaller values of x/M , and
measured spectra of ω1, ω2 and ω3 had to be corrected. The corrections were discussed
in Antonia et al. (1998); after correction, the three vorticity variances provided an
estimate of 〈ε〉 denoted by 〈εh〉 (≡ ν〈ω2

i 〉 for homogeneous turbulence) that agreed
within 10% with that obtained using (2.6). Statistics of vorticity fluctuations have
been shown to be in satisfactory agreement with those estimated from decaying
box turbulence DNS data (Antonia, Orlandi & Zhou 2002a), notwithstanding the
difference in initial conditions between simulation and experiment. Each individual
pair of X-wires provided data for u, v, w with adequate spatial resolution since
the separation between the inclined wires in each X-probe was about 0.6 mm. The
majority of the results presented in this paper use velocity fluctuations determined
from only one combination of two adjoining pairs of X-wires (second-order moments
of velocity statistics are essentially unchanged for any of the four combinations of
adjoining X-wires).

The hot wires were operated with in-house constant-temperature circuits at an
overheat ratio of 0.5. Output signals from these circuits were passed through buck-
and-gain amplifiers and low-pass filtered at a cut-off frequency fc; its magnitude
decreased as x/M increased (fc was 10 kHz at x/M = 20 and 5 kHz at x/M = 40).
The selection of fc was finalized once the frequency corresponding to the onset of
electronic noise was identified (Antonia et al. 1998). The magnitude of fc was quite
close to that of the Kolmogorov frequency fK (≡ U/2πη). The filtered signals were
sampled at a frequency fs � 2fc and digitized using a 12 bit A-D converter. The
record duration was 65 s.

Uncertainties in U and r.m.s. velocity fluctuations were inferred from errors in
the hot-wire calibration data and the scatter (20:1 odds) observed from several
repetitions of particular experimental runs. The uncertainty in U is about ±2% while

the uncertainties in 〈u2〉1/2
, 〈v2〉1/2

and 〈w2〉1/2
are approximately ±4.5%, ±5% and

±5% respectively. The resulting uncertainties in 〈q2〉 and 〈ε〉 are ±7% and ±14%
respectively.

4. Characteristics of grid turbulence
The difficulty of estimating the decay exponent m by fitting a limited number of

data points (for 〈q2〉) is well known. George et al. (2001) noted that this type of
fitting is sensitive to parameter forcing as there are two parameters (A and x0) which
may be varied to achieve a desired value for m. They also indicated that only over
a range where dλ2/dx is constant (with λ defined by (2.16)) can a power-law exist
and similarity conditions be tested. While this may be appropriate for DNS data
with quite small time steps, it is more difficult to implement with grid turbulence
data, usually taken only at a finite number of x locations and relatively coarse
x steps. To avoid this difficulty, the data for λ2/(x − x0) were plotted (figure 2)
for different choices of x0. Figure 2 indicates that the best plateau over the range
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Figure 2. Ratio (λ/M)2/[(x − x0)/M] for different choices of x0. The horizontal line
corresponds to (2.17) when m = −1.25. �, x0/M = 4; �, 2; �, 0; �, −2; �, −4.
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Figure 3. Streamwise variation of 〈q2〉1/m
and 〈ε〉1/(m−1), with m = −1.25. 〈q2〉 is in m2 s−2

and 〈ε〉 is m2 s−3. ◦, 〈q2〉1/m
; �, 〈ε〉1/(m−1). The straight lines through the origin are least-squares

regressions to the data.

30 � x/M � 80 occurs when x0 � 0. Using (2.17) and the value corresponding to the

horizontal line in figure 2 yields m � −1.25. The variation of 〈q2〉1/m
and 〈ε〉1/m−1

with (x − x0)/M is shown in figure 3 for m = −1.25 and the best choice for x0 (�0).
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Figure 4. Comparison between streamwise growth rates of the integral length scale Lq , the
Taylor microscale λ and the Kolmogorov length scale η. The non-dimensional mean energy
dissipation rate Cε is shown on the right ordinate. �, η; �, λ; �, Lq ; +, Cε .

The straight lines which go through the origin represent the data adequately over the
range 30 � (x − x0)/M � 80, allowing for the uncertainty (§ 3) in 〈q2〉 and 〈ε〉. Since
x0 � 0 in the present experiment, x, instead of (x − x0), will be used in subsequent
plots.

The integral length scale is defined by

L =
π

2〈q2〉

∫ ∞

0

E(k)

k
dk. (4.1)

In experiments, E(k) is difficult to estimate; in any case, it is almost invariably
estimated from the one-dimensional spectrum using an assumption (isotropy) that is
unlikely to be valid at small k. A definition, based on the velocity autocorrelation
function, is usually adopted:

Lα =
1

〈α2〉

∫ rα

0

Bα,α(r) dr, (4.2)

where Bα,α is the correlation 〈α(x)α(x + r)〉, with α ≡ u, v or w. For α ≡ q ,
Bq,q ≡ 〈u(x)u(x + r)〉 + 〈v(x)v(x + r)〉 + 〈w(x)w(x + r)〉. The limit rα corresponds to
the first zero-crossing of Bα,α(r). Irrespective of whether (4.1) or (4.2) (α ≡ q) is
adopted, similarity requires that L (or Lq) ∼ λ ∼ x1/2 (George et al. 2001; Wang &
George 2002). This can be readily established after dividing L and Lq by λ, i.e.

L̃ ≡ L

λ
=

π

2

∫ ∞

0

Ẽ(k̃)

k̃
dk̃ L̃q ≡ Lq

λ
=

∫ r̃q

0

B̃q,q(r̃) dr̃ , (4.3)

where k̃ = kλ, Ẽ(k̃) = λE(k)/〈q2〉 (in general, a tilde will denote normalization by λ
and/or 〈q2〉). However, the present estimates of Lq , with Bα,α ≡ 1 − (〈(δα)2〉)/2〈α2〉,
indicate that it is not proportional to λ. Lq varies proportionately to (x − x0)

0.38, as
shown in figure 4. The streamwise variations of Lu, Lv , Lw and Lq , normalized by the
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Figure 5. Streamwise variation of the integral length scale Lα associated with different velocity
fluctuations and normalized by W , the transverse dimension of the wind tunnel working section.
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tunnel lateral dimension, W (=350 mm), are given in figure 5. The decay exponents
associated with these three length scales are of the same order as the exponent for Lq .
Specifically, least-squares fits to the data suggest that Lu ∼ (x−x0)

0.36, Lv ∼ (x−x0)
0.40

and Lw ∼ (x − x0)
0.39. The power-law dependence for Lq is also consistent with

that determined by assuming that the non-dimensional energy dissipation rate Cε

[≡ 33/2〈ε〉Lε〈q2〉−3/2
] is constant (e.g. Batchelor 1953; Tennekes & Lumley 1972).

Sreenivasan (1984) indicated that Cε was a flow-dependent constant (equal to � 1 for
grid turbulence) when Rλ � 50. Antonia & Pearson (2000) (also Antonia, Zhou &
Romano 2002b) have shown that, for nominally the same flow (a two-dimensional
wake) and Rλ, the magnitude of Cε may vary significantly when the initial conditions
are varied. The difficulty in estimating Lε is that Cε is not known a priori. To estimate
Cε here, we have identified Lε with Lq . The present data for Lq , 〈ε〉 and 〈q2〉 yield a
value of Cε equal to 1.03 ± 0.03 (see figure 4). For the M = 5.08 cm square rod grid

of Comte-Bellot & Corrsin (1971), Cu
ε ≡ 〈ε〉Lf 〈u2〉−3/2

, where Lf is the longitudinal
integral length scale based on two-point space–time correlations, and is equal to 1.04
at x/M = 42 and x/M = 98. For these data (see Comte-Bellot & Corrsin 1966),
Lf ∼ (x − x0)

0.35 and Rλ ∼ (x − x0)
−0.15; the present data for Lu and Rλ agree closely

with these variations. Constancy of Cε implies that Lε ∼ (x−x0)
(2+m)/2; with m = −1.25,

Lε ∼ (x−x0)
0.35. Comte-Bellot & Corrsin (1966) reported that their transverse integral

length scale Lg varied as (x − x0)
0.40; the present growth rate of Lv is in accord with

this.
At x/M = 80, Lq/W ∼ 0.032, Lu/W � 0.048, Lv/W � 0.017 and Lw/W � 0.018.

Whilst these values appear to be small, the maximum distance over which
correlation can exist is likely to be larger than the integral length scale (this is
discussed further in § 5, where the behaviour of 〈(δq)2〉 is considered). Corrsin’s
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Figure 6. Streamwise variation of Rλ. The straight line is derived from the fit to 〈q2〉1/m in
figure 3 and (2.17). �, Rλ; —, 63.2(x/M)−0.125.

(1963) criterion that W “should be much larger than the maximum distance over
which some correlation can be detailed” is unlikely to be satisfied adequately.
George et al. (2001) and Wang & George (2002) have shown that the ratio
L/λ is not constant for DNS decaying turbulence data in a periodic box. Only
after a significant correction is applied to the low-wavenumber part of E(k)
does the ratio L/λ become constant, in agreement with G92 and the present
analysis.

The ratios Lu/Lv and Lu/Lw are 2.75 and 2.55, significantly larger than the isotropic
value of 2. Another measure of anisotropy is provided by the ratios 〈v2〉/〈u2〉 and
〈w2〉/〈u2〉 (for isotropic turbulence, these ratios should be equal to 1). In the present
experiments, 〈v2〉/〈u2〉 � 0.72 and 〈w2〉/〈u2〉 � 0.88. While the previous length scale
and turbulence intensity ratios suggest that the large scales deviate from isotropy, it
should also be recognized that the small scales only satisfy isotropy approximately.
Antonia et al. (1998) indicated that the components of 〈ε〉 exhibit non-negligible
departures from isotropy, although 〈ε〉iso and 〈ε〉hom approximate 〈ε〉 adequately, due
to compensations in these departures.

In view of the above-mentioned departures from isotropy, the usual definition of

Rλ ≡ 〈u2〉1/2
λ/ν with λ ≡ 〈u2〉1/2

/〈(∂u/∂x)2〉1/2
is not used here. Instead, a more

general definition, (2.18), with λ given by (2.16), is used. This definition avoids the
ambiguity (e.g. Corrsin 1963; Fulachier & Antonia 1983) arising from the directional
dependence of 〈u2〉 and 〈u2〉/〈(∂u/∂x)2〉. For isotropic turbulence, 〈q2〉 = 3〈u2〉 and
〈ε〉 = 15ν〈(∂u/∂x)2〉, so that the present definitions of λ and Rλ coincide with those
commonly used in the literature. From (2.17) and (2.15), it follows that Rλ varies
proportionately to (x − x0)

(m+1)/2 and must therefore decrease with x, albeit slowly.
The measured values of Rλ (figure 6) are consistent with a (x − x0)

−0.125 decay only
over the range 40 � x/M � 80.
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Figure 7. Turbulent energy structure function normalized using (a) 〈q2〉 and λ, (b) U 2
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5. Similarity of second- and third-order structure functions
The structure function 〈(δq)2〉 was constructed from the sum of 〈(δu)2〉, 〈(δv)2〉 and

〈(δw)2〉. Digital time series for u, v, w were used to form the temporal increments

δu = u(t + τ ) − u(t), δv = v(t + τ ) − v(t), δw = w(t + τ ) − w(t) (5.1)

for a range of values of τ (the smallest value of τ corresponds to one sample, equal
to f −1

s ). These increments may be interpreted directly as spatial increments by using
Taylor’s hypothesis (with r ≡ Uτ ). Distributions of 〈(δq̃)2〉 are shown in figure 7(a)
as a function of r̃ for 30 � x/M � 80. The collapse is adequate for nearly all values
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of r̃ (note that a linear scale is used for the ordinate). Arguably, the quality of the
collapse appears to be best when r̃ is either approximately 1 or exceeds 30. This
latter feature is a consequence of using 〈q2〉 for normalization: for large r̃ , 〈(δq̃)2〉
must equal 2 when the velocity fluctuations become decorrelated and local streamwise
homogeneity is assumed. At very small r̃ , all the data closely satisfy the expectation
〈(δq̃)2〉 ∼ r̃2. The solid vertical arrows in figure 7(a) give a more realistic indication of
the values of r̃ , for the relevant range of x/M , which may be affected by the dimension
W of the tunnel working section than the ratios Lα/W (figure 5). For x/M = 80,
the arrow occurs only just beyond the value of r̃ where 〈(δq̃)2〉 becomes constant.
The possibility that the largest scales may be affected by the spatial constraints of the
tunnel at x/M = 80 cannot be ruled out. The ratio Lα/λ is also shown in figure 7(a)
as vertical broken arrows. It is evident that this ratio is significantly smaller than
the value of r̃ at which 〈(δq̃)2〉 becomes constant so that the magnitude of Lα/W

(figure 5) does not provide a sensitive enough measure of the influence of the tunnel
boundaries.

For comparison, 〈(δq)2〉 is plotted in figure 7(b) using Kolmogorov scaling, i.e.

〈(δq∗)2〉 ≡ 〈(δq)2〉/U 2
K and r∗ ≡ r/η. While there is relatively good collapse for r∗ � 10,

i.e. over the dissipative range, there is a clearly discernible Rλ dependence in 〈(δq∗)2〉
for r∗ � 103. Using the definitions of λ and Rλ, the limiting value of 〈(δq∗)2〉, when
r∗ → ∞, is given by (e.g. Antonia 2000)

〈(δq∗)
2〉 =

2

151/2

(
1 +

〈v2〉
〈u2〉 +

〈w2〉
〈u2〉

)
Rλ.

In isotropic turbulence, 〈v2〉/〈u2〉 = 〈w2〉/〈u2〉 = 1, so that

〈(δq∗)
2〉 =

6Rλ

151/2
.

The magnitude of this limiting value must decrease with x since Rλ decreases with x

(figure 6). The data at large r∗ in figure 7(b) are consistent with this. One characteristic
of the flow downstream of the present grid (round rods) is that 〈(δq̃)2〉 overshoots 2
before becoming constant at large r̃ . An equivalent undershoot (below zero) exists for
Bq,q , since Bq,q(r) = 〈q2〉 − 〈(δq)2〉/2. This behaviour is unlikely to be universal, since
the shape of 〈(δq)2〉 (or Bq,q(r)) depends on the conditions at the grid. There is no
overshoot when the grid is constructed from square rods with the same characteristic
dimensions (and blockage ratio) as for the present grid. Although this may not be
surprising, it does suggest that during the initial period of decay, the effect of initial
conditions on the large scales may be significant, at least for the present small values
of Rλ. This, in turn, implies that the effect of initial conditions on smaller scales,
including those which belong to the dissipative range, may also not be negligible.

There seems to be little doubt, when comparing figure 7(a) with figure 7(b), that,
overall, scaling on 〈q2〉 and λ is superior to that based on Kolmogorov variables. The
latter scaling is adequate only for dissipative scales, typically r∗ � 10; it is however
expected (e.g. Zhou & Antonia 2000) that this range will expand as Rλ increases. In
the limit r∗ → 0, both λ-based and Kolmogorov normalization are compatible since
it can be readily shown that

lim
r∗→0

〈(δq∗)2〉
r∗2

= 1
3
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and

lim
r̃→0

〈(δq̃)2〉
r̃2

= 5
3
.

The equally good collapse at small r̃ or small r∗ in figures 7(a) and 7(b) respectively
is therefore not surprising.

For completeness, we also present the spectrum corresponding to 〈q2〉, i.e.

φq(k1) = φu(k1) + φv(k1) + φw(k1),

where the spectral density φα(k1) is such that
∫ ∞

0
φα(k1) dk1 = 〈α2〉 (α ≡ u, v, w

or q) and k1 (≡ 2πf/U ) is the one-dimensional wavenumber. When 〈q2〉 and λ
are used for normalization (figure 8a), φ̃q(k̃1) is such that

∫ ∞
0

φ̃q(k̃1) dk̃1 = 1; for
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Kolmogorov-normalization (figure 8b),
∫ ∞

0
φ∗

q(k
∗
1) dk∗

1 = 〈q2〉/U 2
K . This latter quantity

varies proportionately to Rλ since, for isotropic turbulence, 〈q∗2〉 =3Rλ/151/2. The
semi-log plot of figure 8(a) highlights the low-wavenumber energy-containing range,
yet preserves the integral area. There is no loss of information with respect to testing
similarity. Comparison between figure 8(a) and figure 8(b) shows once again that
there is better collapse when 〈q2〉 and λ are used. Since the maximum energy occurs
at k̃1 � 0.5 (over the present range of Rλ), λ represents adequately the part of the
spectrum which contributes significantly to the energy. Although there is scatter in
the distributions of k̃1φ̃q(k̃1) around k̃1 = 0.5, this is smaller than that around the peak
value (k∗

1 � 0.04) when Kolmogorov normalization is used. The two vertical arrows
in figure 8(a) indicate the range of values of W−1λ corresponding to 30 � x/M � 80.
Although the location (k̃1 � 0.5) of the peak in k̃1φ̃q(k̃1) is comfortably larger
than the largest value of W −1λ, the possibility that the boundaries of the wind
tunnel’s working section may have affected the largest scales in the flow cannot be
dismissed.

G92 showed that the spectra measured by Comte-Bellot & Corrsin (1971) were
consistent with the similarity solution admitted by the spectral energy equation, (1.3).
The one-dimensional spectra of Comte-Bellot & Corrsin are plotted here (figure 9)
using the same presentation as in figure 8. The use of a linear ordinate is more
likely to show departures from similarity than the logarithmic scale used in G92.
The range of x/M (45 to 385) used by Comte-Bellot & Corrsin is significantly larger
than in the present study although the magnitude and percentage variation (48.6
to 366) are comparable to those in the present study. The distributions in figure 9
indicate little difference between the two types of scaling when k̃1 and k∗

1 are large.
At small wavenumbers, the systematic dependence on x/M (or Rλ) in figure 9(b) is
not discernible in figure 9(a). Nonetheless, the data display significant scatter and the
quality of collapse in figure 8(a) is superior and supports G92 and the present theory
(§ 2) better than figure 9(a).

We now turn our attention to the third-order structure function 〈(δu)(δq)2〉, equal to
the sum (〈(δu)3〉 + 〈(δu)(δv)2〉 + 〈(δu)(δw)2〉). When the normalization uses 〈q2〉 and λ,
the collapse is not as good as in figure 7(a). The magnitude of g (≡ −31/2Rλ〈(δũ)(δq̃)2〉)
at x/M = 30 is significantly larger for r̃ � 5 than that of all the other distributions. It
is however reasonable to assume that x/M = 30 may be insufficient for the third-order
structure function to satisfy similarity; the Rλ plot of figure 6 indeed suggests that
a power-law behaviour for Rλ is obtained only when x/M exceeds 30. It is further
possible that the distribution at x/M = 80 may have been affected by the tunnel
boundaries. In the light of the previous remarks, the collapse of the results in the
range 40 � x/M � 70 is probably tolerable, given the uncertainly in determining g

(see figure 11). The quality of collapse in figure 10(b) is only marginally worse than for
figure 10(a); as expected, the curves overlap satisfactorily when r∗ � 10. Although the
measured g (figure 10a) satisfies (2.2) to a lesser degree than the measured f (figure 7a)
satisfies (2.1), it is plausible that the third-order structure function represents a more
sensitive, if not stringent, test of local isotropy than the second-order structure
function. One would expect 〈(δu)(δq)2〉 to be measured less accurately than 〈(δq)2〉;
an indirect measure of the uncertainty in 〈(δũ)(δq̃)2〉 is the scatter (figure 10) at large
r̃ or r∗ when 〈(δũ)(δq̃)2〉 should be zero. A better estimate of the uncertainty is to
compare the scatter in the distribution of 〈(δũ)(δq̃)2〉 when formed from different
combinations of the time series for (δu), (δv) and (δw) from the four X-wires.

Figure 11 shows one distribution of g denoted by gmeas , at x/M = 50. Also
shown are dashed curves indicating the maximum scatter in all estimates of



Similarity of isotropic turbulence 261

0

0.1

0.2

0.3

0.4

(a)

100 101

k
~

1

k
1φ

u(
k

1)

2

4

1

3

(b)

10010–110–2

k*
1

10–3

10–110–2

0

5

k* 1φ
* u(

k*
1)

Figure 9. One-dimensional spectra of u from Comte-Bellot & Corrsin (1971) (2.54 cm grid;
data are taken from table 2(b) of their paper): (a) normalization by λ and 〈q2〉1/2

; (b) normaliza-
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−31/2Rλ〈(δũ)(δq̃)2〉 over 2 � r̃ � 8. Outside this region, all distributions of gmeas

exhibit relatively good collapse. Figure 11 also compares gmeas with the calculation
using (2.19), denoted by gcal . The effect of neglecting the source term (Γ1) in (2.19)
is also indicated in this figure. The calculation, using all terms in (2.19), is most
accurate between r̃ � 1 and approximately 2Lq (r̃ � 5). A similar level of agreement
was found at other values of x/M . Due to the numerical integration scheme used,
the calculation does not extend to the smallest measured scale (r̃ ≈ 0.27). However,
the lack of resolution within this region is not of great consequence, since, as r̃ → 0,
the dissipative term f ′ will be much larger than either the source terms (i.e. those
containing Γ1 and Γ2) or g. The calculation carried out without the Γ1 term is
equivalent to that proposed by Danaila et al. (2002), in which their self-preserving
form for 〈(δq)2〉 yielded only the Γ2 source term. As figure 11 shows, Γ1 is required
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for an accurate estimate of g. Ignoring Γ1 and Γ2, like Kolmogorov (1941b), would
lead to an even greater error than that estimated (figure 11) by ignoring only Γ1.
For completeness, all terms in (2.19) are shown in figure 12. It is evident that the
magnitude of the Γ2 term increases rapidly as r̃ increases and dominates over all the
other terms when r̃ � 2. The Γ1 term is the next largest term for r̃ � 7. To allow
comparison with figure 11, we have also included in figure 12 the contribution from
(g − 5Γ1r̃

−2/m + 10Γ2r̃
−2 + 2f ′) (solid circles) and (g + 10Γ2r̃

−2 + 2f ′) (open circles).
The latter, where Γ1 is ignored, does not provide as good an agreement with the line
20r̃/3 than the former. It should however be noted that because of the log scale in
figure 12, the comparison between gcal and gmeas in figure 11 provides a more sensitive
test for the balance of the terms in (2.19) than figure 12.
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6. Possible dependence of f and g on the Reynolds number
The similarity solution given in § 2 is valid strictly for fixed initial conditions. In

particular, the relaxed scaling form of the third-order structure function yields a valid
solution regardless of the magnitude of RM . Both f and g will however vary as RM

(which forms part of the initial conditions) is changed.
To illustrate the possible variation of f , we consider here a theoretical form for

f , by parameterizing 〈(δu∗)2〉 for decaying isotropic turbulence. The parameterization
also allows a determination of the extent to which the source terms contribute to
gcal once RM (or more loosely Rλ which will be used hereafter) becomes very large.
Batchelor (1951) obtained an expression for 〈(δu∗)2〉, strictly valid at large Rλ, for
the dissipative (DR) and inertial (IR) ranges. It is explicitly assumed that there is no
influence on the DR from the large scales. Stolovitzky, Sreenivasan & Juneja (1993)
modified Batchelor’s parameterization to include the effect of internal intermittency
in the IR, i.e. the possibility that the IR scaling exponent ζu may depart from its
Kolmogorov (1941c) value of 2/3. A more complete description of 〈(δu∗)2〉 which
extends to scales beyond the IR (and up to L) was obtained by Dhruva (2000) and
subsequently used by Kurien & Sreenivasan (2000). It is given by

〈(δu∗)
2〉 =

r∗2(1 + βr∗)(2c−2)

15(1 + αr∗2)
c , (6.1)

where α [≡ 30(−3/2)] is a measure of the cross-over between the DR and IR, c ≡ 1−ζu/2
and β ≡ L∗−1. To obtain an expression for 〈(δq∗)2〉, the isotropic relation

〈(δq∗)
2〉 =

(
3 + r∗ d

dr∗

)
〈(δu∗)

2〉 (6.2)

is used, giving

〈(δq∗)
2〉 =

r∗2(1 + r∗β)(2c−3)(5 + 2βcr∗ + 3βr∗ − 2αcr∗2 + 5αr∗2 + 3αβr∗3)

15(1 + αr∗2)
(c+1)

. (6.3)

For isotropic turbulence, λ∗ = 151/4R
1/2
λ , 〈q∗2〉 =3Rλ15−1/2 and L∗ ≡ L∗

ε = CεR
3/2
λ 15−3/4.

Relation (6.3) may be re-normalized by λ and 〈q2〉, yielding an expression for 〈(δq̃)2〉,
denoted by fpar . Here Lε is used with Cε = 1, since the alternative definitions of L

((4.1) and (4.2)) require a priori knowledge of 〈(δu)2〉 for all r .
Figure 13 shows fpar over a large Rλ range (100 � Rλ � 106) for ζu = 2/3. The

inset in figure 13 compares (using a linear ordinate) a measured distribution of f at
x/M = 50 (Rλ � 40) with fpar (ζu = 2/3). The agreement is best within the DR and
when r̃ becomes large; evidently, the parameterization (6.3) fails to capture the effect
of initial conditions. The discrepancy in the range 3 < r̃ < 20 is mainly associated
with the effect of initial conditions of the grid, as was indicated in § 5, and also the
departure from isotropy in the experiment.

Using fpar , g was calculated using (2.19); this calculation is denoted by gpar .
According to Kolmogorov (1941b), gpar should exhibit a r̃ behaviour within the IR at
sufficiently large Rλ, with a pre-multiplier of 20/3. In the context of (2.19), this occurs
when the contributions from the Γ1 and Γ2 terms are negligible. The Rλ dependence
of gpar r̃

−1 is shown in figure 13. The peak at small Rλ begins to resemble a plateau
at much higher Rλ. A separation between the energy-containing range and the DR
may exist only when Rλ exceeds about 105; note that at Rλ � 103, a magnitude
achievable using active grids (e.g. Mydlarski & Warhaft 1996), there is no evidence of
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Symbols are as in figure 13.

a plateau. If one accepts that constancy of gr̃−1 is an appropriate indicator of the IR
(the linear dependence of g on r̃ is not affected by intermittency), the distributions in
figure 14 suggest that Rλ needs to be equal to about 106 before a significant IR, over
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approximately two decades in r̃ , is established. The location of the peak in gr̃−1 or
that of the centre of the plateau remains at r̃ � 1, independently of Rλ.

7. Concluding discussion
The analysis and arguments presented in § 2 indicate that similarity of the transport

equation of 〈(δq)2〉 for decaying homogeneous isotropic turbulence is possible when

the characteristic velocity scale 〈q2〉1/2
decays in power-law fashion, i.e. 〈q2〉 ∼ xm, and

the characteristic length scale, which is identifiable with the Taylor microscale, grows
as x1/2. The turbulence Reynolds number Rλ can decay with x if the exponent m is
smaller than −1. These results are in full accord with the results obtained by George
(1992) by considering the spectral energy equation. When m is −1, a result expected to
occur asymptotically (Rλ → ∞), the present similarity solution, like George’s, would
be consistent with the predictions of Kármán & Howarth (1938), Dryden (1948) and
Speziale & Bernard (1992).

In realizations of decaying homogeneous isotropic turbulence, whether they are
carried out in the laboratory or on a computer, m is typically smaller than –1 and
Rλ decays with x (or time), albeit slowly. Such a behaviour is consistent with our
analysis. In turbulent grid flow, the assumptions of homogeneity and isotropy, which
are required in the theory, are violated at large scales and satisfied approximately at
small scales. Although the Taylor microscale λ grows as x1/2 – this follows from the
definition of λ and the power-law variation of 〈q2〉 – the measured values of Lα and
η grow at slower and faster rates respectively than λ. The latter result is as expected
since, for isotropic turbulence, η/λ ∼ R

−1/2
λ and Rλ decays as x(m+1)/2. The former

result very likely reflects the effect on the largest flow scales of the tunnel walls. DNS
data for decaying turbulence appear to also be affected in a similar way, due to the
finite size of the box, e.g. George et al. (2001) and Wang & George (2002).

Despite the limitations of the experiment, the distributions of 〈(δq)2〉, when
normalized by 〈q2〉 and λ, satisfy similarity reasonably well over a significant range of
scales, thus providing support for the analysis. Kolmogorov-normalized distributions
of 〈(δq)2〉 collapse only at small r for the present small value of RM . Despite RM

being small, this collapse is consistent, in spirit, with Kolmogorov’s (1941c) first
similarity hypothesis, mainly because the small scales are nearly isotropic in this
flow. Kolmogorov-normalization breaks down at sufficiently large r since the ratio
〈q∗2〉 ≡ 〈q2〉/U 2

K evolves linearly with Rλ; this local sensitivity may be regarded as
one advantage of structure functions over spectra since, for the latter, it is the integral
under the spectrum which is equal to 〈q∗2〉. The range of r for which Kolmogorov
normalization applies should expand as Rλ increases. If the solution m = −1
corresponds to very large Rλ (as discussed in G92), Kolmogorov normalization would
then be fully consistent with a similarity based on 〈q2〉 and λ (or L). For a given
RM , even when the latter is small, there is a range for which Kolmogorov’s (1941c)
similarity hypothesis is consistent with the solution of § 2. This range extends as RM

increases. A solution based on Kolmogorov’s (1941b) equation, which ignores Γ1 and
Γ2, is relevant at very large RM .

The collapse of the λ-normalized 〈(δq)2〉 data provides an important platform
for the purpose of calculating g ≡ −31/2Rλ〈(δũ)(δq̃)2〉, the normalized third-order
structure function. Agreement between calculated and measured distributions of
g is satisfactory, allowing for the uncertainty in this measurement, the fact that
homogeneity and isotropy are satisfied only approximately in the experiment and the
possible influence of the tunnel walls. The level of agreement is an improvement over
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that previously reported between calculated and measured third-order correlation
functions. It is also comparable to that found by Wang et al. (2000) between DNS
and calculated distributions of T (k).

The calculation of g, based on the present similarity solution and a parametric
relation for f , has been extended to large values of Rλ. The results underline that,
for decaying homogeneous isotropic turbulence, a very large value of Rλ, typically
about 106, is needed before a significant (two decades in r̃) inertial range, where g̃ is
proportional to r̃ (Kolmogorov 1941b), may be claimed. The midpoint of the inertial
range (r̃ � 1) at Rλ = 106 also corresponds to the maximum in gr̃−1 at much lower
Rλ. This behaviour appears to reflect the relevance of λ, which involves both the
turbulent energy 〈q2〉, representing mainly the contribution from large scales, and 〈ε〉
which is a measure of the energy dissipated by the small scales as well as of the rate
at which energy is transferred down the turbulence cascade.

R.A.A. acknowledges the support of the Australian Research Council. R.A.A. and
R.J.S. are very grateful to W. K. George for many interesting discussions.
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von Kármán, T. & Lin, C. C. 1949 On the concept of similarity in the theory of isotropic turbulence.
Rev. Mod. Phys. 21, 516–519.

Kolmogorov, A. N. 1941a On degeneration of isotropic turbulence in an incompressible viscous
fluid. Dokl. Akad. Nauk. SSSR 31, 538–540.

Kolmogorov, A. N. 1941b Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk.
SSSR 32, 16–18.

Kolmogorov, A. N. 1941c The local structure of turbulence in an incompressible fluid with very
large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 301–305.

Kurien, S. & Sreenivasan, K. R. 2000 Anisotropic scaling contributions to high-order structure
functions in high Reynolds number turbulence. Phys. Rev. E 62, 2206–2212.

Lin, C. C. 1948 Note on the law of decay of isotropic turbulence. Proc. Natl Acad. Sci. 34, 540–
543.

Mohamed, M. S. & LaRue, J. C. 1990 The decay power-law in grid generated turbulence. J. Fluid
Mech. 219, 195–214.

Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, Vol. 2. MIT Press.

Mydlarksi, L. & Warhaft, Z. 1996 On the onset of high-Reynolds-number grid-generated wind
tunnel turbulence. J. Fluid Mech. 320, 331–368.

Panchev, P. 1971 Random Functions and Turbulence. Pergamon.

Proudman, I. & Reid, W. H. 1954 On the decay of a normally distributed and homogeneous
turbulent velocity field. Proc. R. Soc. Lond. A 247, 163–189.

Saddoughi, S. G. & Veeravalli, S. V. 1994 Local isotropy in turbulent boundary layers at high
Reynolds number. J. Fluid Mech. 268, 333–372.

Saffman, P. G. 1967 The large scale structure of homogeneous turbulence. J. Fluid Mech. 27,
581–593.

Speziale, C. G. & Bernard, P. S. 1992 The energy decay in self-preserving isotropic turbulence
revisited. J. Fluid Mech. 241, 645–667.

Sreenivasan, K. R. 1984 On the scaling of the energy dissipation rate. Phys. Fluids 27, 1048–1051.

Stewart, R. W. 1951 Triple velocity correlations in isotropic turbulence. Proc. Camb. Phil. Soc. 47,
146–157.

Stewart, R. W. & Townsend, A. A. 1951 Similarity and self-preservation in isotropic turbulence.
Phil. Trans. R. Soc. A 243, 359–386.

Stolovitzky, G., Sreenivasan, K. R. & Juneja, A. 1993 Scaling functions and scaling exponents
in turbulence. Phys. Rev. E 48, R3217–R3220.

Tatsumi, T. 1980 Theory of homogeneous turbulence. Adv. Appl. Mech. 20, 39–133.

Taylor, G. I. 1935 Statistical theory of isotropic turbulence. Parts I–IV. Proc. R. Soc. Lond. A 151,
421–478.

Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.



Similarity of isotropic turbulence 269

Wang, H. & George, W. K. 2002 The integral scale in homogeneous isotropic turbulence. J. Fluid
Mech. 459, 429–443.

Zhou, T. & Antonia, R. A. 2000 Reynolds number dependence of the small scale structure of grid
turbulence. J. Fluid Mech. 406, 81–107.

Zhou, T., Antonia, R. A., Danaila, L. & Anselmet, F. 2000 Transport equations for the mean
energy and temperature dissipation rates in grid turbulence. Exps. Fluids 28, 143–151.

Zhou, Y. & Speziale, C. G. 1998 Advances in the fundamental aspects of turbulence : energy
transfer, interacting scales, and self-preservation in isotropic decay. Appl. Mech. Rev. 51,
267–301.


